Science and Technology Facilities Council
Printable version E-mail this to a friend

A recent change in tax law has clarified that, where a compensation payment from FSCS includes an element representing interest and that compensation is paid after 6 October 2008, the interest element of the compensation is treated as taxable income.

Techniques and instrumentation initially developed for ExoMars - Europe’s next robotic mission to Mars in 2016 - but now due to fly on a NASA mission in 2018, could also provide the answers to the globally pressing issue of energy supply.

A major study by the Imperial College London, funded by the Science and Technology Facilities Council (STFC), aims to use this new technology as an inexpensive and efficient way to help process unconventional energy resources, potentially having an enormous impact on the UK and global economy.

Professor Mark Sephton from Imperial’s Department of Earth Science and Engineering, said: "The research involves using extraction-helping materials, called surfactants, to liberate organic matter from rock in space to gain a deeper understanding into the biological environment on Mars. We aim to show that the same technique could also be used to recycle the prodigious amounts of water necessary to process tar sand deposits and turn them into conventional petroleum."

Usable energy resources are essential to the global economy. Conventional crude oil is a staple energy resource and accounts for over 35% of the world’s energy consumption. As the demand for oil exceeds supply, focus has now turned to trying to tap unconventional fossil fuels, such as tar sands. However, these unconventional fossil fuels must be extracted and upgraded to match the characteristics of more conventional oil deposits and make them commercially viable. The extraction process requires substantial amounts of water which is then left contaminated for extended periods of time. In just hours, the new technology can strip this water of its oily contaminants, removing a bottleneck in the refining process.

"Our new technology is an inexpensive approach that can be used to reduce the water demand during treatment of this type of unconventional hydrocarbon deposit," said Professor Sephton. "Moreover, these extraction helping materials are environmentally harmless to the extent that they are edible. Our research at Imperial College combines first rate scientific investigation with practical engineering design."

Dr Liz Towns-Andrews, Director of Knowledge Exchange at STFC, which is funding the study through its Knowledge Exchange Follow on Fund award scheme, added, "This is a truly valuable study which will not only reveal more about our neighbour Mars, but could also deliver enormous benefits here on Earth. The new research is a direct solution to our worsening energy supply crisis and is a great example of the seamless interaction of pure and applied science with engineering to solve real world environmental and commercial issues. Professor Sephton’s work is well aligned with the current needs of industry and we believe that this ambitious project could be of great benefit to the UK economy."

 

Notes to Editors

Images

Images available from the STFC Press Office

Contacts

Julia Short

Press Officer

STFC

Tel: +44 (0)1793 442 012

Mobile: +44 (0)7770 276 721

Email: Julia.short@stfc.ac.uk

Colin Smith

Press Officer - Faculty of Engineering

Imperial College London

Tel: +44 (0)20 7594 6712

Email: cd.smith@imperial.ac.uk

Duty press officer mobile: +44 (0)7803 886248

Professor Mark Sephton

Imperial College London

Tel: +44 (0)20 7594 6542

Email: m.a.sephton@imperial.ac.uk

 

Science and Technology Facilities Council

The Science and Technology Facilities Council ensures the UK retains its leading place on the world stage by delivering world-class science; accessing and hosting international facilities; developing innovative technologies; and increasing the socio-economic impact of its research through effective knowledge exchange.

The Council has a broad science portfolio including Astronomy, Particle Physics, Particle Astrophysics, Nuclear Physics, Space Science, Synchrotron Radiation, Neutron Sources and High Power Lasers. In addition the Council manages and operates three internationally renowned laboratories:

The Rutherford Appleton Laboratory, Oxfordshire

The Daresbury Laboratory, Cheshire

The UK Astronomy Technology Centre, Edinburgh

The Council gives researchers access to world-class facilities and funds the UK membership of international bodies such as the European Laboratory for Particle Physics (CERN), the Institute Laue Langevin (ILL), European Synchrotron Radiation Facility (ESRF), the European organisation for Astronomical Research in the Southern Hemisphere (ESO) and the European Space Agency (ESA). It also funds UK telescopes overseas on La Palma, Hawaii, Australia and in Chile, and the MERLIN/VLBI National Facility, which includes the Lovell Telescope at Jodrell Bank Observatory.

The Council distributes public money from the Government to support scientific research.

The Council is a partner in the UK space programme, coordinated by the British National Space Centre.

Public Service Insights: Effectively Onboarding New Employees With An Intranet